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Trends Driving HPC/AI Convergence

Key AI Applications are Growing in the HPC Space

Simulation steering with trained AI models

Data preparation and cleansing

Training Neural Networks to do Simulations

Emerging Government Requirements

Recent Dept. of Energy Request for Information for 2025 and beyond specifies both 
HPC and AI performance projections in a converged environment

Commercial IT Convergence

IT departments moving away from disparate architectures for HPC 
and AI to reduce TCO

Keeps common data localized
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HPC vs. AI

Workload Characteristic HPC AI/ML

High Performance Parallel 
Processing

Very Important

FP Precision High Precision Low Precision

Vector vs. Matrix Processing HPC typically uses vectors
Deep learning typically uses 

matrixes

Sparsity and Quantization Not Used
Very Important to Optimize 
Performance and Memory 

Footprint

Memory Bandwidth Very Important

Memory Latency Important to the extent it affects effective bandwidth

Scalable Processor and Memory Very Important

Cost and Power Efficient Very Important
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Serious Issues Facing Data Centers

Data Center Power Consumption

Currently data centers consume ~4% of the planet’s power

At ~15% annual growth this becomes a serious problem 

Power consumption could limit data center expansion

Low Server Utilization

Average server utilization is frequently less than ~30% 

Facebook’s study: <50% server utilization per 24-hours

Low server utilization costs billions of dollars per year

Performance Plateau and Moore’s Law

Performance increase of processors has slowed down 

Moore’s law no longer holds with process shrinks

Wires Are Slower as Process Shrinks

With process shrink transistors are faster but wires are slower

10x smaller process would results in 100x slower wire

Using copper and low-K materials reduced slow down to ~20x

Wire delays are now limiting performance of functional blocks
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Homogeneous vs. Heterogeneous Systems

• General Purpose, Flexible
• Easy Deployment/ 

Maintenance

• Not Designed for HPC or AI
• Low Parallel Performance for 

Modern Workloads

Pros Cons

• Accelerates specific workloads, 
including HPC and AI

• Scalable

• Needs special programming
• Expensive, power-hungry
• Under-utilized – contrary to 

software-defined data center

Homogeneous

NIC SSD

DDR CPU

Heterogeneous

NIC SSD

DDR

GPU TPU FPGA DPU
Comp
Stge

DDR DDRDDR

CPU
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Tachyum Prodigy – The World’s First Universal Processor

Data Center
Pain Points

Solution

TPU®GPGPU

CPU

Scalar

MatrixVector

Tachyum Prodigy Cloud / AI / HPC Supercomputer Chip

Unifies the Functionality of CPU, GPU, and TPU®

Over 3x performance of Xeon

Up to 10x performance at same power

Faster than NVIDIA H100 in HPC and AI

130nm 5nm

Delay

Transistor Wire

Data Center Power Consumption Low Server Utilization

Performance Plateau Slow Wires
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Divergence

HPC

AI

Industry
Transformation

CPU

NIC SSD

DDR

GPU TPU FPGA DPU
Comp
Stge

Accelerator
Sprawl

Problems
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Prodigy Feature Summary
High Performance CPU – HPC and AI for Free

High-Performance 
Processor

• 128 Custom-designed 64-bit cores running at 5.7+ GHz

• Hardware Coherency Supports 2 and 4-socket Systems

High-Throughput
Memory and I/O

• 16 DDR5-7200+ Memory Controllers

• 1TB / 2TB* of Memory Bandwidth (2-4x of x86)

• 64 Lanes of PCIe 5.0

Advanced Process • 5nm Process Technology

Emulation for Other ISAs • Runs Native and x86, Arm, and RISC-V Binaries

HPC and AI Features

• 2 x 1024-bit Vector Units per Core

• 4096-bit Matrix Processors per Core

• FP64, FP32, TF32, BF16, Int8, FP8, TAI Data Types

• Sparse Matrix Multipliers Optimizes Efficiency

• Quantization Support Using Low Precision Data Types

• Scatter/Gather for efficient storing and loading 
matrices

* Bandwidth Amplification Technology

Samples 3Q, 2023

Prodigy CPU Prodigy CPU

128 CPU
Cores

10 Terabit/sec
Full Mesh

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

DDR5-7200

64 Lanes PCIe 5.0
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Prodigy Core Architecture

* Technology to be disclosed at a future date

High Throughput Pipeline

Fetch and decode up to 
8 instructions per clock

8 wide x 6 deep instruction queue

Advanced Functional Units

4 ALUs

1 LD, 1 LD/ST, 1 ST

2 x 1024-bit Vector Units

High Performance Cache

64KB I-Cache

64KB D-Cache

1MB L2 Cache

Shared L3 Cache up to 128MB
L2 from Idle cores available as L3

RAS Features

I-Cache, D-Cache: SECDED

L2 Cache: DECTED

64KB L1 I-Cache 

48 Entry ITLB

Branch 
Predictor

Instruction Queue 
(48 instructions – 8 wide x 6 deep)

Instruction Decoder 
(8 instructions/clock)

Rename/Allocate 
(256 deep)

Scheduler 
(12 Queues x 15 deep)

ALU ALU ALU ALU LD LD/ST ST
1024-bit 

Vector Unit
1024-bit 

Vector Unit

64KB L1 D-Cache + Pre-fetch
(64 entry load queue, 32 entry store queue)

1MB
L2 Cache

Shared L3 
Cache

To DRAM

64 Entry 
DTLB

2048 Entry 
TLB

8 instructions/clock

AI 
Subsystem

Mask 
Unit

128 64-bit Integer Registers
32 Mask 

Regs
128 x 1024-bit Vector 

Registers
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Feature
Prodigy 8380 7763 H100 MI250

Comments

Support for FP8 ✓ ✓ High performance for training and inference

Support for TAI ✓ Increases performance and reduces memory utilization

2 x 1024-bit Vector Units ✓ N/A N/A
• Prodigy 2x wider than Intel 2x512 vector units
• Prodigy 4x wider than AMD 2 x 256 vector units

No Penalty for Misaligned 
Vector Loads/Stores ✓ N/A N/A Intel AVX-512 misaligned LOAD/STORE at half speed

AI Sparsity Support ✓ ✓

Super-Sparsity Support ✓

Native Matrix Support ✓
*

✓ ✓ * Intel matrix support is off the main execution path

Matrix / Vector Processing Built from the Ground Up - Not Bolted On

Prodigy Treats Vectors and Matrices As 1st Class Citizens
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Tachyum Prodigy Software Ecosystem

Applications
• Broad range of applications compiled to 

run natively on Prodigy

Programming 
Languages

• Prodigy supports a broad spectrum of 
programming languages encompassing a 
wide array of applications and workloads

Frameworks & 
Libraries

• Support for major AI frameworks and 
scientific libraries for cutting-edge matrix 
and vector performance

System 
Software

• GCC, Linux and FreeBSD are ported to 
Prodigy along with the GNU libraries

Software 
Roadmap

• Tachyum’s roadmap adds key 
applications for big data, containers, and 
virtualization

Emulation
• SW Emulation with QEMU and C-model
• Prodigy Hardware FPGA Emulation
• Prodigy Runs x86, Arm, & RISC-V binaries

x86

Arm
RISC-

V



Prodigy addresses continuing trends in AI models, 
explosion in complexity as demanded by more complex 
NLP models and more accurate conversational AI. 

NLP transformer models (BERT, GPT-3, Megatron …) 
requires billions of parameters

Computer vision models (ResNet-50, Fast R-CNN, SSD) 
requires real-time processing of 4k video

Training these massive models in FP32 precision can 
take days or even weeks

Scaling Deep Learning

Tachyum’s Solution: 

providing native low precision datatypes (bf16, int8, fp8 …)

matrix multipliers utilizing low precision data types deliver an 

order-of-magnitude higher performance

sparse matrix multipliers pushing the performance 

16 DDR5 interfaces to maximize memory bandwidth and capacity



Quantization and Mixed Precision Training

Quantization

Reduces memory footprint and inference time 
of Neural Networks

Reduces numerical precision of both the weights 
and the operations in the network

FP8 Compared to FP32

4x higher performance

4x memory reduction

4x higher memory bandwidth efficiency

Prodigy Mixed Precision Training using FP8

FP8 used for all arrays 

Weights, activations, errors, and gradients

GEMM operations accumulate to BF16

Master copy of weights stored in BF16

Memory

Memory

FP8

FP8

FP8

FP8

FP32

4x More DataSame
Bandwidth

Memory

Model

Same
Memory

4x Bigger Model

1.0

4.0

FP32 FP8

FP8 vs. FP32

4x Higher FP  
Performance

FP8

Sign
1bit

Sign
1bit

Mantissa
2bits

Exponent
5bits

Exponent
8bits

Mantissa
23bits

FP8
8 bits

4 x FP8
32 bits

FP 32
32 bits

FP8 FP8 FP8



Sparsity and Super-Sparsity

Sparsity

Pruning or compression of neural networks is another 
important approach for scaling deep learning

Prodigy supports block structured sparsity, which Reduces 
memory and computation requirements

Prodigy incorporates special instructions to efficiently 
store, load, and multiply sparse matrices

Prodigy Sparse Matrix Multipliers

Sparsity
4:2 compression ratio

Currently supported by others in the industry

Super-Sparsity
8:3 compression ratio

Introduced by Tachyum

Maximizes compute and memory efficiency



FP8 Instance Segmentation – ConvMixer
IoU FP32 72% vs FP8 71.5%

Target vs Predicted



16

Scaling Deep Learning – Sparsity and Super-Sparsity
FP8 Quantized Resnet20 Model on CIFAR 10

100% 99.3% 97.9%
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Prodigy Sparse Training Accuracy Normalized to FP8 Dense
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Prodigy Top-End FP8 Performance

Super-Sparsity Performance 4x Greater than Dense with Relatively Small Degradation in Accuracy
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Prodigy vs.
Nvidia H100

Tachyum Prodigy Performance 
Normalized to H100

HPC and AI Performance

1.0

3.0

Nvidia H100 SXM Tachyum Prodigy Top-End

FP64:  Prodigy Top-End vs. Nvidia 
SXM

1.0 1.0 1.0

3.0 3.0

6.0

FP8 Dense FP8 Sparse FP8 Prodigy Super-Sparse vs
H100 Sparse

FP8:  Prodigy Top-End vs. Nvidia H100 SXM

Nvidia H100 SXM Tachyum Prodigy Top-End

Prodigy 3x Higher HPC Performance Prodigy 3x - 6x Higher AI Performance
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Prodigy Evaluation Platform

High Scalability with Multiple Configurations
128, 64, and 32-core devices running up to 5+ GHz

4-socket and 2-socket hardware coherent multiprocessor 
configurations in addition to single socket

PCIe 5.0 slots support standard and OCP form factors

Leading-Edge Memory Subsystem Provides Large 
Footprint for AI Processing 

Up to 64 DDR5 DIMM Modules

Up to 64 TB memory capacity with 1TB DIMMs by 2024

Increases to 128 TB with availability of 2TB DIMMs

FP8 with super-sparsity in 128 TB is equivalent to 512 TB 
legacy model

Simple Out-of-the-Box Evaluation
Powerful SDK includes Tachyum Linux, gcc compiler, and 
wide array of software libraries

Runs native and x86, Arm, and RISC-V binaries

Large software ecosystem of applications that have been 
compiled to run natively on Prodigy

Single Prodigy Platform can Process NLP Models in Memory – Big AI
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Summary

Prodigy Feature HPC AI/ML

High Performance Parallel Processing ✓ ✓

Range of Floating-Point Precision ✓ ✓

High Performance Vector and Matrix Operations ✓ ✓

Support for Quantization and Mixed-Precision Training ✓

Sparsity and Super-Sparsity Support ✓

Hardware Acceleration for Sparse Operations ✓

Scalable, including large memory footprint ✓ ✓

High Memory Bandwidth ✓ ✓

Simple Programming Model ✓ ✓

Software Composable for 24/7 server on time ✓ ✓

Easy Deployment and Maintenance ✓ ✓

Cost and Power Efficient ✓ ✓

AI Futures: Tachyum AI
Continues to Scale AI Performance and Efficiency –
STAY TUNED

✓



Visit us at 
Booth #330

www.tachyum.com


